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In this work we have developed a 2D 
unstructured Arbitrary-Lagrangian-
Eulerian (ALE) code. This code is 
devoted to solve computational fluid 

dynamics (CFD) problems for general 
polygonal meshes with fixed connectivity. 
Main components of the method are: (1) a 
Lagrangian scheme, (2) a Reference Rezone 
Jacobian Strategy, and (3) a Remapping 
method. In the Lagrangian scheme each 
polygon is split into subcells. The compatible 
Lagrangian hydrodynamics equations are 
solved during one time step and the mesh 
is moved according to the fluid velocity 
(see Refs. 1, 2, 3). 

The Reference Rezone Jacobian Strategy 
improves the quality of the untangled 
mesh and, at the same time, requires 
the new mesh to be close to the original 
untangled grid (from Step 2) and preserves 
interfaces between materials (see Ref. 4). 
An Untangling process ensures the validity 
of the mesh, if the mesh was tangled as a 
result of the Lagrangian step. The method 
finds an untangled mesh which is as close 
as possible to the previous Lagrangian grid 
(see Refs. 5, 6). 

The Remapping method gives the linear and 
bound preserving remapped hydrodynamics 
variables on the new mesh (see Refs. 7, 8). 

These three steps have been adapted to the 
subcell description of the scheme and the 
polygonal meshes. The Untangling and the 
reference rezone Jacobian processes deal 
now with general polygonal meshes and 
preserve the interfaces between materials. 
The remapping step is performed from a 

subcell point of view and the accuracy of the 
remapping stage has been improved with new 
techniques from [9].

ALE INC. can be used as a purely Lagrangian 
code (only Step 1 is used), an ALE one 
(x Lagrangian steps are performed then 
Steps 2, 3 are activated) or as an Eulerian one 
(Steps 1 and 3 are used and the remapping is 
done on the same initial grid). Moreover the 
code can be used in Cartesian or cylindrical 
coordinates.

Fig. 1 is the simulation of the Guderley 
problem: a unit disk (ρ = 1, ρ = 0) at rest is 
compressed by a cylindrical shock wave. The 
intial mesh is polygonal (either symmetric or 
with a false center of convergence, located at 
(–0.5, 0) as in [1]). Time t = 0, t = 0.6, t = 1.0 
are printed showing the cylindrical symmetry 
preservation with or without an initial 
symmetric polygonal mesh.
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Figure 1—
Guderley problem 
nonsymmetric (left) 
and symmetric (right) 
polygonal mesh—Top: 
t = 0.0, Middle: t = 0.6, 
and Bottom: t = 1.0.

X

Y

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Density

22.1137
21.0058
19.8978
18.7899
17.682
16.5741
15.4662
14.3583
13.2503
12.1424
11.0345
9.9266
8.81869
7.71077
6.60286
5.49494
4.38703
3.27911
2.1712
1.06328

X

Y

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Density

22.6236
19.2606
16.3976
13.9602
11.885
10.1184
8.6143
7.33381
6.24367
5.31557
4.52542
3.85273
3.28004
2.79247
2.37738
2.02399
1.72313
1.46699
1.24893
1.06328

X

Y

-0.5 0 0.5

-0.4

-0.2

0

0.2

0.4

Density

22.6236
19.2606
16.3976
13.9602
11.885
10.1184
8.6143
7.33381
6.24367
5.31557
4.52542
3.85273
3.28004
2.79247
2.37738
2.02399
1.72313
1.46699
1.24893
1.06328

X

Y

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Density

22.6236
19.2606
16.3976
13.9602
11.885
10.1184
8.6143
7.33381
6.24367
5.31557
4.52542
3.85273
3.28004
2.79247
2.37738
2.02399
1.72313
1.46699
1.24893
1.06328

X

Y

-0.5 0 0.5

-0.4

-0.2

0

0.2

0.4

Density

22.6236
19.2606
16.3976
13.9602
11.885
10.1184
8.6143
7.33381
6.24367
5.31557
4.52542
3.85273
3.28004
2.79247
2.37738
2.02399
1.72313
1.46699
1.24893
1.06328

X

Y

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Density

22.1137
21.0058
19.8978
18.7899
17.682
16.5741
15.4662
14.3583
13.2503
12.1424
11.0345
9.9266
8.81869
7.71077
6.60286
5.49494
4.38703
3.27911
2.1712
1.06328




